

django-userextensions’s documentation

Contents

	About
	Requirements & Dependencies

	Installation
	Adding django-userextensions to your django project

	Optional Feature Configurations

	Features
	log-in redirect

	user-defined favorites

	recently viewed URLs

	user-defined preferences

	service account management

	Internals
	Middleware

	Signals

	Models

	Action Views

	GUI Views

	Version History

	LICENSE

About

django-userextensions is a reusable django application that extends the user model to provide profile settings, tracking
of user favorites and recently viewed urls and other user-based functionality and service account management.

See details on django-extensions features on the Features page

Requirements & Dependencies

django-userextensions is built on Python 3.6.x and Django 2.2.x. For a full list of packages and requirements, please
see the requirements.txt file.

https://github.com/davidslusser/django-userextensions/blob/master/requirements.txt

Installation

The django-userextensions package is available on Python Package Index (PyPI) and can be installed via pip with the
following command:

pip install django-userextensions

Adding django-userextensions to your django project

To use django-userextensions in your project, add ‘userextensions’ to INSTALLED_APPS in your settings.py file and run
manage.py migrate to create the required database structure.

INSTALLED_APPS = [
 ...
 'userextensions',
]

Optional Feature Configurations

To include recents tracking, add ‘userextensions.middleware.UserRecentsMiddleware’ to your middleware.

MIDDLEWARE = [
 ...
 'userextensions.middleware.UserRecentsMiddleware',
]

By default, some fixed URLs and URLs with specific prefixes are excluded from being stored in recents. These can be
modified by setting the SKIP_URL_PREFIX_LIST and SKIP_FIXED_URL_LIST parameters in the settings.py file. URLs
stored in recents can also be filtered by http request methods. By default only GET is enabled. This can be modified
by changing the TRACK_METHOD_LIST parameter in the settings.py file.

SKIP_URL_PREFIX_LIST = ['/admin/', '/__debug__/',]
SKIP_FIXED_URL_LIST = ['/', '/login/', '/logout/',]
TRACK_METHOD_LIST = ['GET',]

Several views, with applicable templates, are provided for use. Note, action-based views, such as RefreshApiToken
and UserLoginRedirect do not require templates. Views with GUIs, such as list and detail pages, include templates
with requirements including Twitter Bootstrap. An included base template will be used for these views. You can override
this by setting the BASE_TEMPLATE parameter to your preferred base template in the settings.py file.

To use these, set the BASE_TEMPLATE parameter in the settings.py file and include the userextensions.urls your
project-level urls.py file.

from userextensions.urls import *

urlpatterns = [
 ...
 path('', include('userextensions.urls'),),
]

BASE_TEMPLATE = 'location_of_your_base_template'

To allow the custom user start page, update the LOGIN_REDIRECT_URL parameter in your settings.py file to point to
the userextensions user_login_redirect view. Optionally, the LOGIN_REDIRECT_URL_DEFAULT parameter can be set to
define the page redirected to when a user does not have a start page configured.

LOGIN_REDIRECT_URL = '/userextensions/user_login_redirect'
LOGIN_REDIRECT_URL_DEFAULT = 'myapp/some_cool_page'

Features

This document details the features currently available in django-userextensions.

log-in redirect

Users can define a specific page to be routed to after login. This is set in the UserPreference model with the
start_page field. When configured, the page specified will be displayed after the user logs in. If no start_page for
the user is set, the value set in the LOGIN_REDIRECT_URL_DEFAULT parameter in settings.py will be used. If the
LOGIN_REDIRECT_URL_DEFAULT is not set, the project root '/' will be used.
the project root will be displayed after login.

Start page can be set using the SetStartPage view, available via the
userextensions:set_start_page URL. When called, the referred URL will be set as the users start page. To enable
this feature, ensure the three configuration steps below.

	add ‘userextensions’ to the INSTALLED_APPS:

INSTALLED_APPS = [
 ...
 'userextensions',
]

	set the LOGIN_REDIRECT_URL parameter in your settings.py file:

LOGIN_REDIRECT_URL = '/userextensions/user_login_redirect'
LOGIN_REDIRECT_URL_DEFAULT = '/'

	include the userextensions.urls your project-level urls.py file:

from userextensions.urls import *

urlpatterns = [
 ...
 path('', include('userextensions.urls'),),
]

user-defined favorites

This application allows for users to add URLs as favorites, which capture the full URL including query parameters. A
favorite can be saved by using the AddFavorite view, accessible from the userextensions:add_favorite URL.
Favorites can be deleted by using the DeleteFavorite view, accessible from the userextensions:delete_favorite
URL. Additionally, there is a ListFavorites view available at userextensions:list_favorites that uses a Twitter
Bootstrap based table to list a users favorites.

recently viewed URLs

Recently viewed URLs (recents) can by tracked for users automatically using the included middleware. Users can
individuallyconfigure the number of recents to track via recents_count field in the UserPreference model; this defaults
to 25. Specific static URLs, or URLs with a particular prefix can be excluded by adjusting the SKIP_URL_PREFIX_LIST
and SKIP_FIXED_URL_LIST parameters in the settings.py file. URLs stored in recents can also be filtered by http
request methods. By default only GET is enabled. This can be modified by changing the TRACK_METHOD_LIST
parameter in the settings.py file. Additionally, there is a ListRecents view available at
userextensions:list_recents that uses a Twitter Bootstrap based table to list a users favorites.

To enable recents tracking, ensure the three configuration steps below.

	add the middleware in settings.py:

MIDDLEWARE = [
 ...
 'userextensions.middleware.UserRecentsMiddleware',
]

	set the required parameters in settings.py:

SKIP_URL_PREFIX_LIST = ['/admin/', '/__debug__/',]
SKIP_FIXED_URL_LIST = ['/', '/login/', '/logout/',]
TRACK_METHOD_LIST = ['GET',]

	include the userextensions.urls your project-level urls.py file:

from userextensions.urls import *

urlpatterns = [
 ...
 path('', include('userextensions.urls'),),
]

user-defined preferences

User preferences, for settings like theme, start page, recents count, etc. are available in the UserPreference model.
A view for displaying and editing these preferences , DetailUser, is available at userextensions:detail_user
which uses Twitter Bootstrap. On this page there are links to refresh the API token and edit available preferences.

[image: _images/detail_user.png]

service account management

Version 0.0.10 of django-userextensions introduces service account management and provides the ability to link a
service account to an existing group. By default one service account per group is allowed. Adding a service account
creates a new User (django.contrib.auth.models.User) and a new entry in the ServiceAccount
(userextensions.models.ServiceAccount) that links the created user and group. A DRF API token is created automatically.
The User username is created based on the group name and optional service account prefix and service account suffix.
These can be set in django settings with the following parameters: SRV_ACCOUNT_PREFIX and SRV_ACCOUNT_SUFFIX
If neither of these parameters are set, the default name will be used: <group>_srv

The name used for the service account can be filtered via regex pattern if the SRV_ACCOUNT_GROUP_FILTER_LIST
parameter is set in the django settings. This variable is a list of regular expressions. Matched group 1 of the first
pattern matched will be used for the service account name. For example, if you have a group named ‘team_web_ops’ and
want your service account name to be web_ops_service, the regex ‘team_(S+)’ can be used.

A view for displaying and editing these preferences , ManageServiceAccounts, is available at
userextensions:manage_service_accounts which uses Twitter Bootstrap. This page provides a list all current service
accounts the current user has rights to and all groups without a service account. This is based on existing groups the
user is a member of self-service action are also available.

	Self-service actions on this page include:

	
	display service account API token

	refresh API token

	enable/disable service account

	delete service account

	list users in group

	create service account

[image: _images/manage_service_accounts.png]

Internals

The documentation below details some of the internal workings of django-userextensions and its components. This
documentation is automatically generated from the source code. See the source code in github for full details.

https://github.com/davidslusser/django-userextensions

Middleware

	
class userextensions.middleware.UserRecentsMiddleware(get_response=None)

	This middleware parses data from requests and, where applicable, stores the full url path in the request to the
users list of recently viewed pages (recents). No recents will be stored if the user is not authenticated, user can
not be determined, or if the URL is invalid.

Tracking can be filtered byt methods, URL prefixes, and static URLs
via parameters in the settings.py file. The following are configurable:

	method: tracks only specified methods; defaults to GET

	TRACK_METHOD_LIST = [‘GET’,]

	URL prefixes: will not track URLs that start with the specified prefixes

	SKIP_URL_PREFIX_LIST = [‘/admin/’, ‘/__debug__/’]

	static URLs: will not track the specified URLs

	SKIP_FIXED_URL_LIST = [‘/’, ‘/login/’, ‘/logout/’,]

	
process_request(request)

	read user and url (path) from request, if valid and not in a skip list, add to recents

Signals

	
userextensions.signals.add_user_preference(sender, instance, created, **kwargs)

	This post-save signal adds a UserPreference object when a User is created

	
userextensions.signals.trim_recents(sender, instance, created, **kwargs)

	This post-save signal trims a users recents to only maintain the x most recent urls, where x is the
recents_count configured in the UserPreference table

	
userextensions.signals.create_srv_account_token(sender, instance, created, **kwargs)

	This post-save signal creates a drf token when a new ServiceAccount is created

Models

	
class userextensions.models.Theme(*args, **kwargs)

	This model tracks themes. It can be used to provide user preferred frontend styling options based on
defined css files.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class userextensions.models.UserPreference(*args, **kwargs)

	This table tracks user preferences. Fields include theme, recents_count, page_refresh_time, and start_page.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
timezone

	https://stackoverflow.com/questions/48383549/how-to-show-local-time-in-template

	
class userextensions.models.UserRecent(*args, **kwargs)

	This table stored recently visited urls.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class userextensions.models.UserFavorite(*args, **kwargs)

	This table stores user-defined favorites.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class userextensions.models.ServiceAccount(*args, **kwargs)

	This table stores service accounts and maps to a (service account) user and group

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
clean()

	clean/update/validate data before saving

	
create_drf_token()

	create a drf token for this service account

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

Action Views

This file contains views that perform a well defined action and redirect to a rendered page, typically the referrer. No
page rendering views are contained here.

	
class userextensions.views.action.RefreshApiToken(**kwargs)

	delete current user API (auth) token and create a new one

	
class userextensions.views.action.RefreshSrvAcctApiToken(**kwargs)

	delete current the API (auth) token for a provided service account and create a new one

	
class userextensions.views.action.AddFavorite(**kwargs)

	add (the current) url to the list of user favorites

	
class userextensions.views.action.DeleteFavorite(**kwargs)

	delete a favorite (by pk) and return to the referring page

	
delete(request, *args, **kwargs)

	Call the delete() method on the fetched object and then redirect to the
success URL.

	
class userextensions.views.action.DeleteRecent(**kwargs)

	delete a recent (by pk) and return to the referring page

	
delete(request, *args, **kwargs)

	Call the delete() method on the fetched object and then redirect to the
success URL.

	
class userextensions.views.action.UserLoginRedirect(**kwargs)

	Check if a user has a preferred ‘start page’ to load after login. If so, redirect to that page after login, else
redirect to the project root page.
To enable this redirect, set the LOGIN_REDIRECT_URL parameter in the settings.py to
/userextensions/user_login_redirect and include userextensions.urls in the project level urls.py

	
class userextensions.views.action.SetStartPage(**kwargs)

	set the current page as the users preferred ‘start page’ to be redirected to after login

	
class userextensions.views.action.CreateServiceAccount(**kwargs)

	create a new service account based on a provided group

	
class userextensions.views.action.DeleteServiceAccount(**kwargs)

	delete a service account

	
class userextensions.views.action.EnableServiceAccount(**kwargs)

	enable a service account

	
class userextensions.views.action.DisableServiceAccount(**kwargs)

	disable a service account

GUI Views

This file contains views that render a specific page for the gui.

	
class userextensions.views.gui.ListRecents(**kwargs)

	Displays a list of urls the user has recently visited, rendered in a paginated, searchable, sortable bootstrap
table. This view is filterable via query parameters. Includes links to delete individual entries.

	
class userextensions.views.gui.ListFavorites(**kwargs)

	Displays a list of urls user has set as favorites, rendered in a paginated, searchable, sortable bootstrap
table. This view is filterable via query parameters. Includes links to delete individual entries.

	
class userextensions.views.gui.DetailUser(**kwargs)

	Displays user details, including group configuration, API token, and configuration for theme, start page, and
recents count. Includes link to refresh API token and modal form to edit user preferences.

	
class userextensions.views.gui.ManageServiceAccounts(**kwargs)

	Displays service accounts this user can access (service accounts that are linked to groups this owner is a
member of). Provides mechanisms for users to create service accounts for applicable groups, refresh API tokens, and
enable/disable service accounts

Version History

LICENSE

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

	You must give any other recipients of the Work or
Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices
stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

	If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets “[]”
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Python Module Index

 u

 		 	

 		
 u	

 	[image: -]
 	
 userextensions	

 	
 	
 userextensions.middleware	

 	
 	
 userextensions.models	

 	
 	
 userextensions.signals	

 	
 	
 userextensions.views.action	

 	
 	
 userextensions.views.gui	

Index

 A
 | C
 | D
 | E
 | L
 | M
 | P
 | R
 | S
 | T
 | U

A

 	
 	add_user_preference() (in module userextensions.signals)

 	
 	AddFavorite (class in userextensions.views.action)

C

 	
 	clean() (userextensions.models.ServiceAccount method)

 	create_drf_token() (userextensions.models.ServiceAccount method)

 	
 	create_srv_account_token() (in module userextensions.signals)

 	CreateServiceAccount (class in userextensions.views.action)

D

 	
 	delete() (userextensions.views.action.DeleteFavorite method)

 	(userextensions.views.action.DeleteRecent method)

 	DeleteFavorite (class in userextensions.views.action)

 	
 	DeleteRecent (class in userextensions.views.action)

 	DeleteServiceAccount (class in userextensions.views.action)

 	DetailUser (class in userextensions.views.gui)

 	DisableServiceAccount (class in userextensions.views.action)

E

 	
 	EnableServiceAccount (class in userextensions.views.action)

L

 	
 	ListFavorites (class in userextensions.views.gui)

 	
 	ListRecents (class in userextensions.views.gui)

M

 	
 	ManageServiceAccounts (class in userextensions.views.gui)

P

 	
 	process_request() (userextensions.middleware.UserRecentsMiddleware method)

R

 	
 	RefreshApiToken (class in userextensions.views.action)

 	
 	RefreshSrvAcctApiToken (class in userextensions.views.action)

S

 	
 	save() (userextensions.models.ServiceAccount method)

 	ServiceAccount (class in userextensions.models)

 	
 	ServiceAccount.DoesNotExist

 	ServiceAccount.MultipleObjectsReturned

 	SetStartPage (class in userextensions.views.action)

T

 	
 	Theme (class in userextensions.models)

 	Theme.DoesNotExist

 	
 	Theme.MultipleObjectsReturned

 	timezone (userextensions.models.UserPreference attribute)

 	trim_recents() (in module userextensions.signals)

U

 	
 	userextensions.middleware (module)

 	userextensions.models (module)

 	userextensions.signals (module)

 	userextensions.views.action (module)

 	userextensions.views.gui (module)

 	UserFavorite (class in userextensions.models)

 	UserFavorite.DoesNotExist

 	UserFavorite.MultipleObjectsReturned

 	
 	UserLoginRedirect (class in userextensions.views.action)

 	UserPreference (class in userextensions.models)

 	UserPreference.DoesNotExist

 	UserPreference.MultipleObjectsReturned

 	UserRecent (class in userextensions.models)

 	UserRecent.DoesNotExist

 	UserRecent.MultipleObjectsReturned

 	UserRecentsMiddleware (class in userextensions.middleware)

 _static/comment-bright.png

_images/manage_service_accounts.png
Manage Service Accounts:

o

Service Accounts

User Account Group Enabled Actions
admins_srv admins v FPTOW
group_002_srv group_002 v FPTOW
Groups Without Service Accounts
Group User Count Actions
group_003 3 &+
test001 1 a +

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/detail_user.png
User Profile: david

Is Active: [

Is Staff: [

Is Superuser: [

Date Joined: Aug. 23, 2020, 11:52 p.m.

API Token: acBA45c35¢19bcfe87d13aco653f8c3biddatcas

* Recents Count: 25

Start Page: 5
E =z
admins group_002 group_003

test001

_static/minus.png

nav.xhtml

 Table of Contents

 		
 django-userextensions’s documentation

 		
 About

 		
 Requirements & Dependencies

 		
 Installation

 		
 Adding django-userextensions to your django project

 		
 Optional Feature Configurations

 		
 Features

 		
 log-in redirect

 		
 user-defined favorites

 		
 recently viewed URLs

 		
 user-defined preferences

 		
 service account management

 		
 Internals

 		
 Middleware

 		
 Signals

 		
 Models

 		
 Action Views

 		
 GUI Views

 		
 Version History

 		
 LICENSE

_static/up-pressed.png

_static/up.png

_static/plus.png

